Serveur d'exploration sur Pittsburgh

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Cationic Nanogel-mediated Runx2 and Osterix siRNA Delivery Decreases Mineralization in MC3T3 Cells

Identifieur interne : 003A47 ( Main/Exploration ); précédent : 003A46; suivant : 003A48

Cationic Nanogel-mediated Runx2 and Osterix siRNA Delivery Decreases Mineralization in MC3T3 Cells

Auteurs : Arun R. Shrivats [États-Unis] ; Eric Hsu [États-Unis] ; Saadyah Averick [États-Unis] ; Molly Klimak [États-Unis] ; April C. S. Watt [États-Unis] ; Marlene Demaio [États-Unis] ; Krzysztof Matyjaszewski [États-Unis] ; Jeffrey O. Hollinger [États-Unis]

Source :

RBID : PMC:4418993

Descripteurs français

English descriptors

Abstract

Background

Heterotopic ossification (HO) may occur after musculoskeletal trauma, traumatic brain injury, and total joint arthroplasty. As such, HO is a compelling clinical concern in both military and civilian medicine. A possible etiology of HO involves dysregulated signals in the bone morphogenetic protein osteogenic cascade. Contemporary treatment options for HO (ie, nonsteroidal antiinflammatory drugs and radiation therapy) have adverse effects associated with their use and are not biologically engineered to abrogate the molecular mechanisms that govern osteogenic differentiation.

Questions/purposes

We hypothesized that (1) nanogel-mediated short interfering RNA (siRNA) delivery against Runt-related transcription factor 2 (Runx2) and osterix (Osx) genes will decrease messenger RNA expression; (2) inhibit activity of the osteogenic marker alkaline phosphatase (ALP); and (3) inhibit hydroxyapatite (HA) deposition in osteoblast cell cultures.

Methods

Nanogel nanostructured polymers delivered siRNA in 48-hour treatment cycles against master osteogenic regulators, Runx2 and Osx, in murine calvarial preosteoblasts (MC3T3-E1.4) stimulated for osteogenic differentiation by recombinant human bone morphogenetic protein (rhBMP-2). The efficacy of RNA interference (RNAi) therapeutics was determined by quantitation of messenger RNA knockdown (by quantitative reverse transcription-polymerase chain reaction), downstream protein knockdown (determined ALP enzymatic activity assay), and HA deposition (determined by OsteoImage™ assay).

Results

Gene expression assays demonstrated that nanogel-based RNAi treatments at 1:1 and 5:1 nanogel:short interfering RNA weight ratios reduced Runx2 expression by 48.59% ± 19.53% (p < 0.001) and 43.22% ± 18.01% (both p < 0.001). The same 1:1 and 5:1 treatments against both Runx2 and Osx reduced expression of Osx by 51.65% ± 10.85% and 47.65% ± 9.80% (both p < 0.001). Moreover, repeated 48-hour RNAi treatment cycles against Runx2 and Osx rhBMP-2 administration reduced ALP activity after 4 and 7 days. ALP reductions after 4 days in culture by nanogel 5:1 and 10:1 RNAi treatments were 32.4% ± 12.0% and 33.6% ± 13.8% (both p < 0.001). After 7 days in culture, nanogel 1:1 and 5:1 RNAi treatments produced 35.9% ± 14.0% and 47.7% ± 3.2% reductions in ALP activity. Osteoblast mineralization data after 21 days suggested that nanogel 1:1, 5:1, and 10:1 RNAi treatments decreased mineralization (ie, HA deposition) from cultures treated only with rhBMP-2 (p < 0.001). However, despite RNAi attack on Runx2 and Osx, HA deposition levels remained greater than non-rhBMP-2-treated cell cultures.

Conclusions

Although mRNA and protein knockdown were confirmed as a result of RNAi treatments against Runx2 and Osx, complete elimination of mineralization processes was not achieved. RNAi targeting mid- and late-stage osteoblast differentiation markers such as ALP, osteocalcin, osteopontin, and bone sialoprotein) may produce the desired RNAi-nanogel nanostructured polymer HO prophylaxis.

Clinical Relevance

Successful HO prophylaxis should target and silence osteogenic markers critical for heterotopic bone formation processes. The identification of such markers, beyond RUNX2 and OSX, may enhance the effectiveness of RNAi prophylaxes for HO.


Url:
DOI: 10.1007/s11999-014-4073-0
PubMed: 25448327
PubMed Central: 4418993


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Cationic Nanogel-mediated Runx2 and Osterix siRNA Delivery Decreases Mineralization in MC3T3 Cells</title>
<author>
<name sortKey="Shrivats, Arun R" sort="Shrivats, Arun R" uniqKey="Shrivats A" first="Arun R." last="Shrivats">Arun R. Shrivats</name>
<affiliation wicri:level="2">
<nlm:aff id="Aff1">Department of Biomedical Engineering, Carnegie Mellon University, 700 Technology Drive, Pittsburgh, PA 15219 USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Department of Biomedical Engineering, Carnegie Mellon University, 700 Technology Drive, Pittsburgh</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Hsu, Eric" sort="Hsu, Eric" uniqKey="Hsu E" first="Eric" last="Hsu">Eric Hsu</name>
<affiliation wicri:level="2">
<nlm:aff id="Aff1">Department of Biomedical Engineering, Carnegie Mellon University, 700 Technology Drive, Pittsburgh, PA 15219 USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Department of Biomedical Engineering, Carnegie Mellon University, 700 Technology Drive, Pittsburgh</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Averick, Saadyah" sort="Averick, Saadyah" uniqKey="Averick S" first="Saadyah" last="Averick">Saadyah Averick</name>
<affiliation wicri:level="2">
<nlm:aff id="Aff2">Department of Chemistry, Carnegie Mellon University, 4400 Fifth Ave, Pittsburgh, PA 15213 USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Department of Chemistry, Carnegie Mellon University, 4400 Fifth Ave, Pittsburgh</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Klimak, Molly" sort="Klimak, Molly" uniqKey="Klimak M" first="Molly" last="Klimak">Molly Klimak</name>
<affiliation wicri:level="2">
<nlm:aff id="Aff1">Department of Biomedical Engineering, Carnegie Mellon University, 700 Technology Drive, Pittsburgh, PA 15219 USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Department of Biomedical Engineering, Carnegie Mellon University, 700 Technology Drive, Pittsburgh</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Watt, April C S" sort="Watt, April C S" uniqKey="Watt A" first="April C. S." last="Watt">April C. S. Watt</name>
<affiliation wicri:level="2">
<nlm:aff id="Aff1">Department of Biomedical Engineering, Carnegie Mellon University, 700 Technology Drive, Pittsburgh, PA 15219 USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Department of Biomedical Engineering, Carnegie Mellon University, 700 Technology Drive, Pittsburgh</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Demaio, Marlene" sort="Demaio, Marlene" uniqKey="Demaio M" first="Marlene" last="Demaio">Marlene Demaio</name>
<affiliation wicri:level="2">
<nlm:aff id="Aff3">Department of Orthopaedic Surgery, Naval Medical Center Portsmouth, 620 John Paul Jones Cir, Portsmouth, VA 23708 USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Virginie</region>
</placeName>
<wicri:cityArea>Department of Orthopaedic Surgery, Naval Medical Center Portsmouth, 620 John Paul Jones Cir, Portsmouth</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Matyjaszewski, Krzysztof" sort="Matyjaszewski, Krzysztof" uniqKey="Matyjaszewski K" first="Krzysztof" last="Matyjaszewski">Krzysztof Matyjaszewski</name>
<affiliation wicri:level="2">
<nlm:aff id="Aff2">Department of Chemistry, Carnegie Mellon University, 4400 Fifth Ave, Pittsburgh, PA 15213 USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Department of Chemistry, Carnegie Mellon University, 4400 Fifth Ave, Pittsburgh</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Hollinger, Jeffrey O" sort="Hollinger, Jeffrey O" uniqKey="Hollinger J" first="Jeffrey O." last="Hollinger">Jeffrey O. Hollinger</name>
<affiliation wicri:level="2">
<nlm:aff id="Aff1">Department of Biomedical Engineering, Carnegie Mellon University, 700 Technology Drive, Pittsburgh, PA 15219 USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Department of Biomedical Engineering, Carnegie Mellon University, 700 Technology Drive, Pittsburgh</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">25448327</idno>
<idno type="pmc">4418993</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4418993</idno>
<idno type="RBID">PMC:4418993</idno>
<idno type="doi">10.1007/s11999-014-4073-0</idno>
<date when="2014">2014</date>
<idno type="wicri:Area/Pmc/Corpus">000402</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000402</idno>
<idno type="wicri:Area/Pmc/Curation">000402</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Curation">000402</idno>
<idno type="wicri:Area/Pmc/Checkpoint">001955</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Checkpoint">001955</idno>
<idno type="wicri:source">PubMed</idno>
<idno type="wicri:Area/PubMed/Corpus">000225</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000225</idno>
<idno type="wicri:Area/PubMed/Curation">000225</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000225</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000225</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000225</idno>
<idno type="wicri:Area/Ncbi/Merge">004112</idno>
<idno type="wicri:Area/Ncbi/Curation">004112</idno>
<idno type="wicri:Area/Ncbi/Checkpoint">004112</idno>
<idno type="wicri:doubleKey">0009-921X:2014:Shrivats A:cationic:nanogel:mediated</idno>
<idno type="wicri:Area/Main/Merge">003C36</idno>
<idno type="wicri:Area/Main/Curation">003A47</idno>
<idno type="wicri:Area/Main/Exploration">003A47</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Cationic Nanogel-mediated Runx2 and Osterix siRNA Delivery Decreases Mineralization in MC3T3 Cells</title>
<author>
<name sortKey="Shrivats, Arun R" sort="Shrivats, Arun R" uniqKey="Shrivats A" first="Arun R." last="Shrivats">Arun R. Shrivats</name>
<affiliation wicri:level="2">
<nlm:aff id="Aff1">Department of Biomedical Engineering, Carnegie Mellon University, 700 Technology Drive, Pittsburgh, PA 15219 USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Department of Biomedical Engineering, Carnegie Mellon University, 700 Technology Drive, Pittsburgh</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Hsu, Eric" sort="Hsu, Eric" uniqKey="Hsu E" first="Eric" last="Hsu">Eric Hsu</name>
<affiliation wicri:level="2">
<nlm:aff id="Aff1">Department of Biomedical Engineering, Carnegie Mellon University, 700 Technology Drive, Pittsburgh, PA 15219 USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Department of Biomedical Engineering, Carnegie Mellon University, 700 Technology Drive, Pittsburgh</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Averick, Saadyah" sort="Averick, Saadyah" uniqKey="Averick S" first="Saadyah" last="Averick">Saadyah Averick</name>
<affiliation wicri:level="2">
<nlm:aff id="Aff2">Department of Chemistry, Carnegie Mellon University, 4400 Fifth Ave, Pittsburgh, PA 15213 USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Department of Chemistry, Carnegie Mellon University, 4400 Fifth Ave, Pittsburgh</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Klimak, Molly" sort="Klimak, Molly" uniqKey="Klimak M" first="Molly" last="Klimak">Molly Klimak</name>
<affiliation wicri:level="2">
<nlm:aff id="Aff1">Department of Biomedical Engineering, Carnegie Mellon University, 700 Technology Drive, Pittsburgh, PA 15219 USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Department of Biomedical Engineering, Carnegie Mellon University, 700 Technology Drive, Pittsburgh</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Watt, April C S" sort="Watt, April C S" uniqKey="Watt A" first="April C. S." last="Watt">April C. S. Watt</name>
<affiliation wicri:level="2">
<nlm:aff id="Aff1">Department of Biomedical Engineering, Carnegie Mellon University, 700 Technology Drive, Pittsburgh, PA 15219 USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Department of Biomedical Engineering, Carnegie Mellon University, 700 Technology Drive, Pittsburgh</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Demaio, Marlene" sort="Demaio, Marlene" uniqKey="Demaio M" first="Marlene" last="Demaio">Marlene Demaio</name>
<affiliation wicri:level="2">
<nlm:aff id="Aff3">Department of Orthopaedic Surgery, Naval Medical Center Portsmouth, 620 John Paul Jones Cir, Portsmouth, VA 23708 USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Virginie</region>
</placeName>
<wicri:cityArea>Department of Orthopaedic Surgery, Naval Medical Center Portsmouth, 620 John Paul Jones Cir, Portsmouth</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Matyjaszewski, Krzysztof" sort="Matyjaszewski, Krzysztof" uniqKey="Matyjaszewski K" first="Krzysztof" last="Matyjaszewski">Krzysztof Matyjaszewski</name>
<affiliation wicri:level="2">
<nlm:aff id="Aff2">Department of Chemistry, Carnegie Mellon University, 4400 Fifth Ave, Pittsburgh, PA 15213 USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Department of Chemistry, Carnegie Mellon University, 4400 Fifth Ave, Pittsburgh</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Hollinger, Jeffrey O" sort="Hollinger, Jeffrey O" uniqKey="Hollinger J" first="Jeffrey O." last="Hollinger">Jeffrey O. Hollinger</name>
<affiliation wicri:level="2">
<nlm:aff id="Aff1">Department of Biomedical Engineering, Carnegie Mellon University, 700 Technology Drive, Pittsburgh, PA 15219 USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Department of Biomedical Engineering, Carnegie Mellon University, 700 Technology Drive, Pittsburgh</wicri:cityArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Clinical Orthopaedics and Related Research</title>
<idno type="ISSN">0009-921X</idno>
<idno type="eISSN">1528-1132</idno>
<imprint>
<date when="2014">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>3T3 Cells</term>
<term>Alkaline Phosphatase (metabolism)</term>
<term>Animals</term>
<term>Biomarkers (metabolism)</term>
<term>Bone Morphogenetic Protein 2 (pharmacology)</term>
<term>Calcification, Physiologic (drug effects)</term>
<term>Cations</term>
<term>Core Binding Factor Alpha 1 Subunit (genetics)</term>
<term>Core Binding Factor Alpha 1 Subunit (metabolism)</term>
<term>Down-Regulation</term>
<term>Durapatite (metabolism)</term>
<term>Gels</term>
<term>Mice</term>
<term>Nanostructures</term>
<term>Osteoblasts (drug effects)</term>
<term>Osteoblasts (metabolism)</term>
<term>Polymethacrylic Acids (chemistry)</term>
<term>RNA Interference</term>
<term>RNA, Small Interfering (genetics)</term>
<term>RNA, Small Interfering (metabolism)</term>
<term>Time Factors</term>
<term>Transcription Factors (genetics)</term>
<term>Transcription Factors (metabolism)</term>
<term>Transfection (methods)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux</term>
<term>Calcification physiologique ()</term>
<term>Cations</term>
<term>Cellules 3T3</term>
<term>Durapatite (métabolisme)</term>
<term>Facteurs de transcription (génétique)</term>
<term>Facteurs de transcription (métabolisme)</term>
<term>Facteurs temps</term>
<term>Gels</term>
<term>Interférence par ARN</term>
<term>Marqueurs biologiques (métabolisme)</term>
<term>Nanostructures</term>
<term>Ostéoblastes ()</term>
<term>Ostéoblastes (métabolisme)</term>
<term>Petit ARN interférent (génétique)</term>
<term>Petit ARN interférent (métabolisme)</term>
<term>Phosphatase alcaline (métabolisme)</term>
<term>Poly(acides méthacryliques) ()</term>
<term>Protéine morphogénétique osseuse de type 2 (pharmacologie)</term>
<term>Régulation négative</term>
<term>Souris</term>
<term>Sous-unité alpha 1 du facteur CBF (génétique)</term>
<term>Sous-unité alpha 1 du facteur CBF (métabolisme)</term>
<term>Transfection ()</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Polymethacrylic Acids</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Core Binding Factor Alpha 1 Subunit</term>
<term>RNA, Small Interfering</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Alkaline Phosphatase</term>
<term>Biomarkers</term>
<term>Core Binding Factor Alpha 1 Subunit</term>
<term>Durapatite</term>
<term>RNA, Small Interfering</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Bone Morphogenetic Protein 2</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Calcification, Physiologic</term>
<term>Osteoblasts</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Facteurs de transcription</term>
<term>Petit ARN interférent</term>
<term>Sous-unité alpha 1 du facteur CBF</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Osteoblasts</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Transfection</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Durapatite</term>
<term>Facteurs de transcription</term>
<term>Marqueurs biologiques</term>
<term>Ostéoblastes</term>
<term>Petit ARN interférent</term>
<term>Phosphatase alcaline</term>
<term>Sous-unité alpha 1 du facteur CBF</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Protéine morphogénétique osseuse de type 2</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>3T3 Cells</term>
<term>Animals</term>
<term>Cations</term>
<term>Down-Regulation</term>
<term>Gels</term>
<term>Mice</term>
<term>Nanostructures</term>
<term>RNA Interference</term>
<term>Time Factors</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Calcification physiologique</term>
<term>Cations</term>
<term>Cellules 3T3</term>
<term>Facteurs temps</term>
<term>Gels</term>
<term>Interférence par ARN</term>
<term>Nanostructures</term>
<term>Ostéoblastes</term>
<term>Poly(acides méthacryliques)</term>
<term>Régulation négative</term>
<term>Souris</term>
<term>Transfection</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<sec>
<title>Background</title>
<p>Heterotopic ossification (HO) may occur after musculoskeletal trauma, traumatic brain injury, and total joint arthroplasty. As such, HO is a compelling clinical concern in both military and civilian medicine. A possible etiology of HO involves dysregulated signals in the bone morphogenetic protein osteogenic cascade. Contemporary treatment options for HO (ie, nonsteroidal antiinflammatory drugs and radiation therapy) have adverse effects associated with their use and are not biologically engineered to abrogate the molecular mechanisms that govern osteogenic differentiation.</p>
</sec>
<sec>
<title>Questions/purposes</title>
<p>We hypothesized that (1) nanogel-mediated short interfering RNA (siRNA) delivery against Runt-related transcription factor 2 (
<italic>Runx2</italic>
) and osterix (
<italic>Osx</italic>
) genes will decrease messenger RNA expression; (2) inhibit activity of the osteogenic marker alkaline phosphatase (ALP); and (3) inhibit hydroxyapatite (HA) deposition in osteoblast cell cultures.</p>
</sec>
<sec>
<title>Methods</title>
<p>Nanogel nanostructured polymers delivered siRNA in 48-hour treatment cycles against master osteogenic regulators,
<italic>Runx2</italic>
and
<italic>Osx</italic>
, in murine calvarial preosteoblasts (MC3T3-E1.4) stimulated for osteogenic differentiation by recombinant human bone morphogenetic protein (rhBMP-2). The efficacy of RNA interference (RNAi) therapeutics was determined by quantitation of messenger RNA knockdown (by quantitative reverse transcription-polymerase chain reaction), downstream protein knockdown (determined ALP enzymatic activity assay), and HA deposition (determined by OsteoImage™ assay).</p>
</sec>
<sec>
<title>Results</title>
<p>Gene expression assays demonstrated that nanogel-based RNAi treatments at 1:1 and 5:1 nanogel:short interfering RNA weight ratios reduced
<italic>Runx2</italic>
expression by 48.59% ± 19.53% (p < 0.001) and 43.22% ± 18.01% (both p < 0.001). The same 1:1 and 5:1 treatments against both
<italic>Runx2</italic>
and
<italic>Osx</italic>
reduced expression of
<italic>Osx</italic>
by 51.65% ± 10.85% and 47.65% ± 9.80% (both p < 0.001). Moreover, repeated 48-hour RNAi treatment cycles against
<italic>Runx2</italic>
and
<italic>Osx</italic>
rhBMP-2 administration reduced ALP activity after 4 and 7 days. ALP reductions after 4 days in culture by nanogel 5:1 and 10:1 RNAi treatments were 32.4% ± 12.0% and 33.6% ± 13.8% (both p < 0.001). After 7 days in culture, nanogel 1:1 and 5:1 RNAi treatments produced 35.9% ± 14.0% and 47.7% ± 3.2% reductions in ALP activity. Osteoblast mineralization data after 21 days suggested that nanogel 1:1, 5:1, and 10:1 RNAi treatments decreased mineralization (ie, HA deposition) from cultures treated only with rhBMP-2 (p < 0.001). However, despite RNAi attack on
<italic>Runx2</italic>
and
<italic>Osx</italic>
, HA deposition levels remained greater than non-rhBMP-2-treated cell cultures.</p>
</sec>
<sec>
<title>Conclusions</title>
<p>Although mRNA and protein knockdown were confirmed as a result of RNAi treatments against
<italic>Runx2</italic>
and
<italic>Osx</italic>
, complete elimination of mineralization processes was not achieved. RNAi targeting mid- and late-stage osteoblast differentiation markers such as ALP, osteocalcin, osteopontin, and bone sialoprotein) may produce the desired RNAi-nanogel nanostructured polymer HO prophylaxis.</p>
</sec>
<sec>
<title>Clinical Relevance</title>
<p>Successful HO prophylaxis should target and silence osteogenic markers critical for heterotopic bone formation processes. The identification of such markers, beyond RUNX2 and OSX, may enhance the effectiveness of RNAi prophylaxes for HO.</p>
</sec>
</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Pennsylvanie</li>
<li>Virginie</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Pennsylvanie">
<name sortKey="Shrivats, Arun R" sort="Shrivats, Arun R" uniqKey="Shrivats A" first="Arun R." last="Shrivats">Arun R. Shrivats</name>
</region>
<name sortKey="Averick, Saadyah" sort="Averick, Saadyah" uniqKey="Averick S" first="Saadyah" last="Averick">Saadyah Averick</name>
<name sortKey="Demaio, Marlene" sort="Demaio, Marlene" uniqKey="Demaio M" first="Marlene" last="Demaio">Marlene Demaio</name>
<name sortKey="Hollinger, Jeffrey O" sort="Hollinger, Jeffrey O" uniqKey="Hollinger J" first="Jeffrey O." last="Hollinger">Jeffrey O. Hollinger</name>
<name sortKey="Hsu, Eric" sort="Hsu, Eric" uniqKey="Hsu E" first="Eric" last="Hsu">Eric Hsu</name>
<name sortKey="Klimak, Molly" sort="Klimak, Molly" uniqKey="Klimak M" first="Molly" last="Klimak">Molly Klimak</name>
<name sortKey="Matyjaszewski, Krzysztof" sort="Matyjaszewski, Krzysztof" uniqKey="Matyjaszewski K" first="Krzysztof" last="Matyjaszewski">Krzysztof Matyjaszewski</name>
<name sortKey="Watt, April C S" sort="Watt, April C S" uniqKey="Watt A" first="April C. S." last="Watt">April C. S. Watt</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Amérique/explor/PittsburghV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003A47 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003A47 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Amérique
   |area=    PittsburghV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     PMC:4418993
   |texte=   Cationic Nanogel-mediated Runx2 and Osterix siRNA Delivery Decreases Mineralization in MC3T3 Cells
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25448327" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PittsburghV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Jun 18 17:37:45 2021. Site generation: Fri Jun 18 18:15:47 2021